# Particle Tomography of the Inner Magnetosphere

H. Korth, M. F. Thomsen, and W. S. Phillips

Los Alamos, New Mexico, USA

K.-H. Glaßmeier

Institut für Geophysik und Meteorologie Technische Universität Braunschweig Braunschweig, Germany







## **Topics**

- Particle tomography of the inner magnetosphere.
- Description of parameters.
- Development and test of the inversion algorithm.
- Application to geosynchronous observations.
- Discussion.
- Summary.



# Particle Tomography of the Inner Magnetosphere





- Statistics of the phase space density at geosynchronous orbit.
- The **convection model** provides the trajectories connecting two corresponding data points.
- Assumption: Proton losses due to charge exchange with exospheric neutral hydrogen.
- ⇒ Neutral hydrogen distribution by inversion.
- ⇒ Remote-sensing technique known as tomography.



### **Geosynchronous Proton Flux Statistics: 1997**





#### **Global Drift Pattern**

- A variety of **energies**, **locations**, and **Kp levels** lead to a fine mesh of trajectories from the night- to the day-side.
- Dipolar magnetic field.
- Electric potential models:
  - ✓ Volland-Stern (J. Geophys. Res., 595, 1975),
  - ✓ McIlwain E5D (*Adv. Space Res.*, 187, 1986),
  - ✓ Weimer 96 (*Geophys. Res. Lett.*, 2549,1996).

• Example: Volland-Stern / Dipole drift paths.





### **Charge Exchange**

- Liouville's theorem: The phase space density remains constant along the particle trajectory.
- Process:  $H_E^+ + H \rightarrow H_E^- + H^+$ .
- Decrease of the phase space density f:

$$v_{
m D} \; rac{\partial f}{\partial s} = -\sigma \; v_{
m th} \; n_{
m H} \; f$$

$$\Rightarrow f_{
m out} = f_{
m in} \exp \left(-\int \sigma \, v_{
m th} \, n_{
m H} \, rac{
m ds}{v_{
m D}}
ight),$$

where  $\sigma$  charge-exchange cross-section,  $v_{\rm th}$  thermal speed,  $v_{\rm D}$  drift speed,  $n_{\rm H}$  neutral hydrogen density.

• The charge-exchange cross-section is energy-dependent:





### **Tomographic Inversion**

• **Discretization** of phase space density decrease:

$$\sum_{\mathbf{i}} \sigma_{\mathbf{i}} \, v_{\mathrm{th,i}} \, \Delta t_{\mathbf{i}} \quad n_{\mathrm{H,i}} = \ln\left(rac{f_{\mathrm{in}}}{f_{\mathrm{out}}}
ight),$$

where  $\vec{\mathbf{A}}$  contains the drift paths,  $\vec{d}$  the PSD ratios, and  $\vec{m}$  the neutral densities.



- The matrix A is invertible if it is square and regular.
- Square:  $(\mathbf{A}^{\mathrm{T}}\mathbf{A}) \vec{m} = \mathbf{A}^{\mathrm{T}} \vec{d}$ .
- Regular:  $(\mathbf{A}^{\mathrm{T}}\mathbf{A} + \lambda \mathbf{D}^{\mathrm{T}}\mathbf{D}) \vec{m} = \mathbf{A}^{\mathrm{T}}\vec{d}$ .
- ⇒ The neutral density distribution is given by:

$$\vec{m} = (\mathbf{A}^{\mathrm{T}}\mathbf{A} + \lambda \mathbf{D}^{\mathrm{T}}\mathbf{D})^{-1} \mathbf{A}^{\mathrm{T}}\vec{d}.$$



#### **Inversion of the Forward Simulation**

• Distribution of exospheric neutral hydrogen: Chamberlain model with Rairden 86 parameterization.



• Inversion of the Forward Simulation:





### The Weight Factor

- Model solution:  $\vec{m} = (\mathbf{A}^{\mathrm{T}}\mathbf{A} + \lambda \mathbf{D}^{\mathrm{T}}\mathbf{D})^{-1} \mathbf{A}^{\mathrm{T}}\vec{d}$ .
- Choice of the weight factor  $\lambda$ :



- $\lambda$  too small  $\Rightarrow$  Data noise prevails.
- $\lambda$  too large  $\Rightarrow$  Average density.



#### **Inversion of the MPA Statistics**

(Year: 1997)

- Volland-Stern electric potential, dipole magnetic field.
- Inverted neutral hydrogen distribution:



• The inversion shows **near-Earth densities** that are **significantly lower** than predicted by the Chamberlain model.



#### **Inverted Hydrogen Densities**





# Inverted Hydrogen Densities (Resolution $\geq 0.2$ )





## **Geosynchronous Trajectories**

- Higher energies
- Example: 10 keV @ 6.6  $R_{\rm E}$ , 0 LT, Kp=3.



- Drift time:  $\sim$ 5 hours.
- Simulated and observed losses are comparable.



## **Near-Earth Trajectories**

- Lower energies
- Example: 1 keV @ 6.6  $R_{\rm E}$ , 20 LT, Kp=3.



- Drift time:  $\sim$ 80 hours.
- Observed losses are much smaller than simulations show.



#### Summary

- Inversion algorithm was successfully tested on a testbed database obtained by forward-modeling drifts through a Chamberlain exosphere.
- MPA-data inversion shows large differences compared to the Chamberlain model in the near-Earth region.
- Inversions using other convection models produce similar results.
- These differences are due to lower-than-expected losses of lower-energy particles that nominally drift through the inner region.
- Possible implications:
  - 1. Actual hydrogen density may be lower than the Chamberlain model in the inner region predicts.
  - 2. There may be sources within the inner region.
  - 3. Drift paths don't actually penetrate that deeply. (More sophisticated convection models are needed, perhaps including temporal variations.)

